BIỂN ĐẢO VIỆT NAM

THỜI GIAN TRÔI

NỘI DUNG WEBSITE

Điều tra ý kiến

Bạn có hay truy cập trang Website này không?
Thường xuyên
Chỉ khi có việc cần
Ít khi
Không bao giờ

Hiện tại có:

người đang truy cập

Thống kê

  • truy cập   (chi tiết)
    trong hôm nay
  • lượt xem
    trong hôm nay
  • thành viên
  • Ảnh ngẫu nhiên

    229.jpg IMG_00012.jpg IMG_00461.jpg Tap_the.jpg Video0012.flv NGVN2012.jpg Videoplayback_8.flv LOI_CAM_ON_THAY_CO_NHAN_NGAY__20_11.swf Bai_ca_nguyen_tu_khoi.png Nhung_dieu_thay_chua_ke.swf Noi_buon_hoa_phuong.swf Gui_anh_tinh.jpg BAN_DO_17_TINH_THCS_KK_NHAT.jpg Tap_the_GV_200920101.jpg Ngay_he1.jpg MR_Phe1.jpg Da_cau1.jpg

    Thành viên trực tuyến

    1 khách và 0 thành viên

    Sắp xếp dữ liệu

    7 bài toàn thiên niên kỷ

    Wait
    • Begin_button
    • Prev_button
    • Play_button
    • Stop_button
    • Next_button
    • End_button
    • 0 / 0
    • Loading_status
    Nhấn vào đây để tải về
    Báo tài liệu có sai sót
    Nhắn tin cho tác giả
    (Tài liệu chưa được thẩm định)
    Nguồn: Tham Khảo
    Người gửi: Thiều Quang Hùng
    Ngày gửi: 16h:13' 10-01-2013
    Dung lượng: 102.0 KB
    Số lượt tải: 4
    Số lượt thích: 0 người
    7 bài toán học thiên niên kỉ
    Thảo luận trong `Tin tức - Sự kiện` bắt đầu bởi Airblade14, 20/11/09.
    Trang 1 / 3 1 2 3 Sau >

    Airblade14 Nam Air
    1
    Trên TG vẫn còn tồn tại vô số những bí ẩn mà với vốn kiến thức hữu hạn hiện nay, con người vẫn chưa tìm ra câu trả lời. Ví dụ thật sự có sự sống ngoài trái đất hay không, ma quỉ là sản phẩm của trí tưởng tượng hay có thật, khi chết đi chúng ta có được sống ở nơi gọi là "kiếp sau" hay không... ? Toán học, một trong những môn học góp phần tạo nên nền tảng của khoa học hiện đại ngày nay cũng còn tồn tại những vấn đề cực kì gai góc, điển hình nhất là 7 bài toán thiên niên kỉ, mà thế giới đã treo phần thưởng 1 triệu $ cho bất cứ ai có thể giải quyết một trong số 7 bài toán đó. Giả thuyết Poincaré Lấy một quả bóng (hoặc một vật hình cầu), vẽ trên đó một đường cong khép kín không có điểm cắt nhau, sau đó cắt quả bóng theo đường vừa vẽ: bạn sẽ nhận được hai mảnh bóng vỡ. Làm lại như vậy với một cái phao (hay một vật hình xuyến): lần này bạn không được hai mảnh phao vỡ mà chỉ được có một. Trong hình học topo, người ta gọi quả bóng đối lập với cái phao, là một bề mặt liên thông đơn giản. Một điều rất dễ chứng minh là trong không gian 3 chiều, mọi bề mặt liên thông đơn giản hữu hạn và không có biên đều là bề mặt của một vật hình cầu. Vào năm 1904, nhà toán học Pháp Henri Poincaré đặt ra câu hỏi: Liệu tính chất này của các vật hình cầu có còn đúng trong không gian bốn chiều. Điều kỳ lạ là các nhà hình học topo đã chứng minh được rằng điều này đúng trong những không gian lớn hơn hoặc bằng 5 chiều, nhưng chưa ai chứng minh được tính chất này vẫn đúng trong không gian bốn chiều.
     Henri Poincare (1854-1912), nhà vật lý học và toán học người Pháp, một trong những nhà toán học lớn nhất thế kỷ 19. Giả thuyết Poincaré do ông đưa ra năm 1904 là một trong những thách thức lớn nhất của toán học thế kỷ 20
    Vấn đề P khác NP (P # NP) Với quyển từ điển trong tay, liệu bạn thấy tra nghĩa của từ "thằn lắn" dễ hơn, hay tìm một từ phổ thông để diễn tả “loài bò sát có bốn chân, da có vảy ánh kim, thường ở bờ bụi” dễ hơn? Câu trả lời hầu như chắc chắn là tra nghĩa thì dễ hơn tìm từ. Những các nhà toán học lại không chắc chắn như thế. Nhà toán học Canada Stephen Cook là người đầu tiên, vào năm 1971, đặt ra câu hỏi này một cách “toán học”. Sử dụng ngôn ngữ lôgic của tin học, ông đã định nghĩa một cách chính xác tập hợp những vấn đề mà người ta thẩm tra kết quả dễ hơn (gọi là tập hợp P), và tập hợp những vấn đề mà người ta dễ tìm ra hơn (gọi là tập hợp NP). Liệu hai tập hợp này có trùng nhau không? Các nhà lôgic học khẳng định P # NP. Như mọi người, họ tin rằng có những vấn đề rất khó tìm ra lời giải, nhưng lại dễ thẩm tra kết quả. Nó giống như việc tìm ra số chia của 13717421 là việc rất phức tạp, nhưng rất dễ kiểm tra rằng 3607 x 3808 = 13717421. Đó chính là nền tảng của phần lớn các loại mật mã: rất khó giải mã, nhưng lại dễ kiểm tra mã có đúng không. Tuy nhiên, cũng lại chưa có ai chứng minh được điều đó. "Nếu P=NP, mọi giả thuyết của chúng ta đến nay là sai" – Stephen Cook báo trước. "Một mặt, điều này sẽ giải quyết được rất nhiều vấn đề tin học ứng dụng trong công nghiệp; nhưng mặt khác lại sẽ phá hủy sự bảo mật của toàn bộ các giao dịch tài chính thực hiện qua Internet". Mọi ngân hàng đều hoảng sợ trước vấn đề lôgic nhỏ bé và cơ bản này!
     N = NP ? Alan Turing (1912-1954), nhà toán học người Anh
    Các phương trình của Yang-Mills Các nhà toán học thường chậm chân hơn các nhà vật lý. Nếu như từ lâu, các nhà vật lý đã sử dụng các phương trình của Yang-Mills trong các máy gia tốc hạt trên toàn thế giới, thì các ông bạn toán học của họ vẫn không thể xác định chính xác số nghiệm của các phương trình này. Được xác lập vào những năm 50 bởi các nhà vật lý Mỹ Chen Nin Yang và Robert Mills, các phương trình này đã biểu diễn mối quan hệ mật thiết giữa vật lý về hạt cơ bản với hình học của các không gian
     
    Gửi ý kiến





    Tim địa danh mà ban muốn biết

    Bản Đồ